ON SOME EXTREMAL PROBLEMS IN GRAPH THEORY

ву P. ERDÖS

ABSTRACT

The author proves that if C is a sufficiently large constant then every graph of n vertices and $[Cn^{3/2}]$ edges contains a hexagon X_1 , X_2 , X_3 , X_4 , X_5 , X_6 and a seventh vertex Y joined to X_1 , X_3 and X_5 . The problem is left open whether our graph contains the edges of a cube, (i.e. an eight vertex Z joined to X_2 , X_4 and X_6).

Throughout this paper G, G' will denote graphs, V(G) denotes the number of edges, $\pi(G)$ the number of vertices of G. G(n;m) is a graph of n vertices and m edges. Vertices will be denoted by $x_1 \cdots y_1 \cdots$ edges by (x, y). $\{x_1, \dots, x_n\}$ denotes a path whose edges are $(x_1, x_2), \dots, (x_{n-1}, x_n)$, the vertices x_1, \dots, x_n are assumed distinct, n-1 is the length of the path, similarly (x_1, \dots, x_n) is a circuit of length n whose edges are $(x_1, x_2), \dots, (x_{n-1}, x_n), (x_n, x_1)$. v(x), the valency of x is the number of edges incident to x. $G(x_1, \dots, x_n)$ is the subgraph of G spanned by (x_1, \dots, x_n) . In an even graph all circuits have even length. It is well known and easy to see that the vertices of an even graph can be divided into two classes A and B so that every edge joins a vertex of A to a vertex of B. C, c, c, c, c, c denote suitable positive absolute constants.

Recently several papers appeared which discussed various extremal problems in graph theory [1]. Denote by f(n;k,l) the smallest integer for which every G(n;f(n;k;l)) contains a G(k,l). Two years ago Turán asked me to determine or estimate the smallest integer m for which every G(n;m) contains the various graphs determined by the vertices and edges of the regular polyhedra. For the tetrahedron the problem was solved many years ago by Turán himself [6], for the octahedron I proved several years ago that $(n^2/4) + cn^{3/2} < m < (n^2/4) + Cn^{3/2}$, details of the proof have not been published [1] and in this note we do not discuss the octahedron. The question for the dodecahedron and icosahedron seems difficult.

It is well known that $f(n;4,4) > cn^{3/2}$, but for a sufficiently large C every $f(n;[Cn^{3/2}])$ contains a rectangle [2]. One might conjecture that for a sufficiently large C every $G(n;[Cn^{3/2}])$ contains a cube. In fact I proved that $f(n;8,12) < Cn^{3/2}$, and I even showed that every $G(n;[Cn^{3/2}])$ contains a G(8;12) having the vertices,

Received February 24, 1965.

 $x_1, x_2, x_3, x_4; y_1, y_2, y_3, y_4$ and the edges (x_i, y_j) where min $(i, j) \le 2$ [3]. But at present I can not prove that it must contain a cube. I can prove the much weaker result that it contains a G(7,9) consisting of a hexagon (x_1, \dots, x_6) and a vertex y joined to x_1, x_3 and x_5 . To prove the existence of a cube we would need an eighth vertex z joined to x_2, x_4 and x_6 , and I have not succeeded in showing this.

More precisely I am going to prove the following

THEOREM. Let $n > n_0(k)$. Then every $G(n; 10[k^{1/2}n^{3/2}])$ contains a

$$G(2k+1;4k-2)$$

which has a path of length $2k\{x_1, y_1, \dots, y_k, x_{k+1}\}$ and the further edges $(x_1, y_i), (y_1, x_j), 2 \le i \le k, 3 \le j \le k+1$.

Clearly our G(2k+1,4k-2) contains for every $2 \le l \le k$ a circuit of length and another vertex joined to every second vertex of our circuit.

It seems likely that for a sufficiently large c_k every $G(n; [c_k n^{3/2}])$ contains a $G(1+k+\binom{k}{2}; k^2)$ defined as follows: The vertices are $x_0; y_1, \dots, y_k; z_{i,j}, 1 \le i < j \le k$, x_0 is joined to all the y's and $z_{i,j}$ to y_i and y_j . I can not prove this for k > 3.

To prove our Theorem we need two lemmas.

LEMMA 1. Every G(n; m) has an even subgraph having at least m/2 edges.

We prove the Lemma by induction for n. It is clearly true for $n \le 2$. Assume that it is true for n-1, we shall show it for n. Denote the vertices of G(n;m) by x_1, \dots, x_n . Since the lemma is true for n-1, we can split the vertices $x_1 \cdots x_{n-1}$ into two classer A and B so that the number of edges joining a vertex of A to a vertex of B is at least $\frac{1}{2}V(G(x_1, \dots, x_{n-1}))$. Without loss of generality we can assume that the number of edges joining x_n to the vertices of B is at least $\frac{1}{2}v(x_n)$. But then the even graph spanned by the vertices $A \cup X_n$ and B has at least $\frac{1}{2}(V(G(x_{1...}, x_{n-1}) + v(x_n)) \ge (m/2)$ edges, which proves the Lemma.

By a slightly more careful induction process we can prove that if the graph G(n;m) has no vertices of valency 0 then it contains an even graph having at least $\left[\frac{m}{2} + \frac{n}{4}\right]$ edges. The complete graph of n vertices $G\left(n; \binom{n}{2}\right)$ shows that this result is in general best possible. It seems probable that if we know that our G(n;m) contains no triangle, the lemma can be considerably strengthened i.e. m/2 can perhaps be improved to cm for some c > 1/2, but I did not succeed in doing this.

LEMMA 2. Every G(n;m) contains a subgraph G' every vertex of which has valency (in G') greater that $\lceil m/n \rceil$.

The Lemma is known [4]. The proof is very simple.

(1)
$$V(G'') > 4tk^{1/2}n^{1/2}.$$

Denote by $x_2, \dots x_{u''}$ the x_i with

(2)
$$v(x_i) > 2tk^{1/2}/n^{1/2}.$$

Let G''' be the subgraph of G'' spanned by $x_2, \dots, x_{u''}$; y_1, \dots, y_t . By (1), (2) and u'' < n we have

(3)
$$V(G''') > V(G'') - 2tk^{1/2}n^{1/2} > 2tk^{1/2}n^{1/2},$$

By (3) one of the y's has valency $> 2k^{1/2}n^{1/2}$ (in G'''). Let this vertex be y_1 and let $x_2, \dots x_{l+1} l > 2k^{1/2}n^{1/2}$ be the vertices joined to y_1 . Consider finally the graph $G'''(x_2, \dots x_{l+1}, y_2 \dots, y_l)$, each x_i has by (2) valency greater than $2t^{k^{1/2}}/n^{1/2} - 1 > tk^{1/2}/n^{1/2}$ ($t > 4k^{1/2}n^{1/2}$). Thus by a simple computation

(4)
$$V(G'''(x_2,\dots,x_{l+1},y_t,\dots,y_t)) > \frac{tlk^{1/2}}{n} > k\pi(G'''(x_2,\dots,x_{l+1},y_2,\dots,y_t))$$

since by $t > 4k^{1/2}n^{1/2}$,

$$l > 2k^{1/2}n^{1/2} \frac{tl}{t+l} > \frac{8kn}{6k^{1/2}n^{1/2}} > k^{1/2}n^{1/2}$$

and $\pi(G'''(x_2 \cdots x_{l+1}, y_2 \cdots y_t)) = l + t - 1.$

From (4) we obtain by a theorem of Gallai and myself [5] that

$$G'''(x_2, \cdots x_{l+1}, y_t \cdots y_t)$$

has a path of length $2k - 2\{x_2, y_2, \dots, y_k, x_{k+1}\}$. By our construction x_1 is joined to every y of our path and y_1 to every x of it. Thus finally $G'''(x_1, \dots x_{l+1}, y_1, \dots y_k)$ satisfies the requirements of our Theorem.

The constant 10 could clearly be reduced, but I made no attempt in doing so since I am not sure if the factor $k^{1/2}$ is of the right order of magnitude.

REFERENCES

- 1. P. Erdös, Extremal problems in graph theory, Proc. Symposium on Graph theory, Smolenice, Acad. C.S.S.R. (1963), 29-36.
- 2. P. Erdös, On sequences of integers no one of which divides the product of two others and on some related problems, Irv. Inst. Math. i Mech. Tomsk, 2 (1938), 79-82.
 - 3. P. Erdös, On an extremal problem in graph theory, Coll. Math. 13 (1965), 251-254.
- 4. P. Erdös, On the structure of linear graphs, In. J. Math. 1 (1963), 156-160, see Lemma 1, p. 157-158.
- 5. P. Erdös and P. Gallai, On the maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hung. 10 (1959), 337-357.
 - 6. P. Turán, On the theory of graphs, Coll. Math. 3 (1955), 19-30.

TECHNION-ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA